
Dr. Yannis Karamitsos,

Digital Transformation Technologist

Blockchain & Smart Contracts 
Building blocks for Smart Cities

DECENTRALIZED

2017



1

2

3 Use Cases-Templates

Blockchain- Smart Contracts

Smart Cities



Smart Cities

Smart Cities

Blockchain- Smart Contracts

Use Cases



4

Cities, 
is biggest

business network



Smart City

It is not only Technology, it is an ecosystem.

Technology

LegalEnvironmental

Economic Social



Digital signageCitizens applications portal (Smart Apps Center)

City objects/sensors/actuators

IT infrastructure: VPN, LAN, WAN, Flexible Computing (Cloud), Cybesecurity

Network: fiber*, 4G.5G, Wi-Fi, LoRa IoT network

Vertical applications

Smart retail  
services

Urban/  
environment  
monitoring

Smart  
building  
services

Mobility  
services

Smart home  
services

Public  
safety

City infrastructure management

Lights    Traffic   Parking  Waste

Application tools (authentication, payment, monetization, NFC, geolocalization, etc.)

Command center
To aggregate and share urban data

IoT platform, big data, open data (live objects manage/flexible data)

5G

S
e
c
u

rity
Smart Cities Ecosystem



Smart City Infrastructure

Safe City Smart Living

Smart Government Smart Mobility

Smart People

Active  Infrastructure
Passive Infrastructure

Data Center Systems

Smart City Enabling Platforms

Smart Environment

Application Layer

Platform Layer

Infrastructure Layer

Blockchain

Internet

P2P network

Data Center- Power Computing

dApp dApp

dAppdApp

dAppdApp

Infrastructure Layer

Blockchain Technology Stack  
for Smart City

Storage and Content

Application Layer



Anything that is capable of being owned or controlled to 

produce value, is considered an asset can be tangible or 

intangible value can be converted into cash.

A participant is a member of a business network Customer, 

Supplier, Government, Regulator. Usually reside in an 

organization. Have specific identities and roles.

A transaction is an asset transfer between two or 

more participants

A contract is set of conditions under which transactions 

occur

How we can think Blockchain for 

Smart City?



Blockchain- Smart Contracts

Smart Cities

Blockchain- Smart Contracts

Use Cases



Blockchain Revolution

• Blockchain 1.0 is the 

CURRENCY, the 

deployment of 

cryptocurrencies in 

apps related to cash, 

and financial 

transactions 

Blockchain

1.0

Blockchain

2.0

Blockchain

3.0

• Blockchain 2.0 is 

CONTRACTS, the 

deployment of 

smart properties, 

digital assets, and 

smart contracts

• Blockchain 3.0 is 

APPLICATIONS, in 

new areas of smart 

cities, IoT.M2M, 

government ,health, 

science, and art.

• Typical application 

is Solidity

• Blockchain 1.0 is the 

decentralization of 

money and payments

• Blockchain 2.0 is the 

decentralization of 

markets

• Typical platform is 

Ethereum



Smart Contracts
(Solidity)

Front-end 
(HTML-CSS)

Dapp

Back-end (JavaScript)

Smart Contracts
(Solidity)

Front-end 
(HTML-CSS)

Dapp

Back-end (JavaScript)

Ethereum Client
(geth)

Swarm Client & 
Local store

Whisper client

Ethereum Node 

Solidity Compiler
(solc)

Ethereum Client
(geth)

Swarm Client & 
Local store

Whisper client

Ethereum Node 

Solidity Compiler
(solc)

Ethereum Blockchain 
Network

Whisper

Swarm

Ethereum Blockchain Components



Front-end 
(HTML-CSS) 

Back-end
(Java script) 

Contracts SW language 
(Solidity, Serpent)

Ethereum
(Decentralized 
Computation

Swarm
(Decentralized 
Storage)

Whisper
(Decentralized 
Messaging)

EVM Blockchain 

Contracts 

Accounts 

Mining 
Transactions

Ethereum Protocol

Node discovery P2P networking

Encrypted Handshake
Encrypt transport Peer preference

Peer reputation
Ethereum Networking

Ethereum Blockchain Components



Smart Contracts: The Theory

A legally binding, digitally manifest agreement with the power to reengineer itself dynamically, 

depending on the terms and conditions of the market/commercial context to which it applies, via the 

implementation of an implicitly encoded set of rules

• Removal of manual intervention and oversight 

eg. from legal counsel

• Reduction in associated legal costs, fees and 

process (time)

• speed of contract creation and execution

• Automated transfer of funds via computer 

recognizable/definable events

• Flexibility in contract

The Smart Contracts Goals:

Source: Finite and Infinite Games, James P. Carse



Smart contracts can automatize execution of transactions

The parties
agree on a
contract.

The rules are coded in a
program

The contract  
defines a set of  

rules.

This program is stored in the  
nodes of the Blockchain.

The nodes of the Blockchain will  
execute the program

of the Smart Contract.

• Smart contracts are useful in many occasions to replace human intervention (ex: in case of 

an a estate agency, to send automatically  the keys once the contract has been signed, 

and rental has been paid).
• Risk : the  code remains vulnerable and can be corrupted.



Smart Contracts: The Pragmatic Present

• Assets are no longer passive objects but have dynamic behavior

• Behavior can be fine-grain, associated with each transaction

• Contracts can be digital entities that can send and receive value

• Contracts can spawn other digital entities and create an 

autonomous ecosystem

• Strong caveat: Technology is not ready because it relies on 

conventional software programming languages

• Future smart-contract platforms will be mathematically verifiable

• Recommendation: No more than 200 lines of code at this point

Source: Gartner



Deterministic Smart  Contract
Smart contract can be divided into deterministic and non-deterministic smart contracts.

Deterministic smart contracts are smart contract codes that do not depend on outside

information other than information on the Blockchain in which they live into be triggered and

work effectively. In other words, the Blockchain network facilitating the smart contract has

sufficient information to make decisions.

E.g.,

peer-to-peer lottery: the funds are held on the Blockchain network and random numbers are also

generated by the smart contract code. At the end of the lottery, the funds are transferred the

winners account via his or her address on the Blockchain network



Non-Deterministic Smart Contracts

In Non -Deterministic smart contracts the network facilitating the smart contract code does

not have sufficient information to make decisions. Thus an outside party is needed, usually

called an ‘Oracle’ in the computer science domain.

Decisions about value flow based on human behavior, events (price drop or hike) or

predictions. However, research has shown that using external state does not always introduce

the need for trusting an additional party.

For example, in a driving license renewal scenario, the government is a trusted party anyway,

thus, we use government as a validation oracle that injects external state into the blockchain.

Oracles Connectors are known in computer science for their ability to provide information

from outside a system that the system itself cannot acquire.

Oracles also store the data and only pass the important and relevant data to the smart

contract. This ensures the security and high privacy of the network and improves efficiency.



• Dapp is an application that uses smart contracts. 

• Dapp provides a user-friendly interface to smart contracts

• Dapp main components are smart contract and files for web user interface front-end/back-end 

Step 1
•Implement smart contract in a high-level language

Step 2
•Compile the contracts in a high-level language

Step 3

•Deploy the contracts on Ethereum Blockchain network 
using Ethereum clients

Step 4

•Build web applications that interact with the smart 
contracts

Decentralized Application (Dapp)



1. Send smart contract 
for compilation

Smart Contract

Front end 
App.(js)

Back-end 
(Javascript) 

Dapp

Front end 
HTML/CSS
(index. html)

2. Contract binary

3. Deploy Contract 

4. Contract address and 
ABI sent back to Dapp

5. Send transaction to 
contract

Compiler

Ethereum Client
-Geth
-PyEthApp

Ethereum Node 

Dapp Creation Workflow



Use cases

Smart Cities

Introduction to Blockchain

Use Cases



Implement the contracts (including state 

variables, functions, modifiers, and 

events) in a high-level language such as 

Solidity. For Dapp implement front-end 

(HTML and CSS) and backend (Javasript)

Implementation Stage

Collection of requirements, 

Identify the entities involved, 

their roles and 

responsibilities and types of 

interaction between them 

(contract owner, users)

Model the entity attributes as 

state variables and 

interactions between them as 

functions. Capture the 

dependencies and constraints

Analysis Stage Design Stage

Design Methodology for Smart 

Contract Application





Users can turn a switch “on” or “off” for a certain duration by sending a transaction with a  Value to 

the smart contract associated with the switch. 

The contract act as an agreement between the user and the switch to turn on the switch on. 

For a certain duration based on the amount of cryptocurrency (Ether) sent by the user to the  

SmartSwitch contract account.

Such case can be used for automating solar charging stations. 

For example, where a user can connect their devices to a charging station and then send a 

transaction to the smart contract associated with the charging station to activate it.  

Use Case: Smart Switch Contract  IoT 



State Variables

Functions

Modifiers

Events

Smart Contract

Contract 

Owner

Account Address

Account Balance 

(Ether)

Account Keys 

(Private &Public)

Account 

Creates/
Owns

Call/Transactions

User

User

Account

Account

Call/Transactions

Call/Transactions

Examples: IoT apps Energy meters, 
Solar switch

IoT
Device

Call/Transactions

Application Template: Many-to-one for IoT



State Variables

. address public owner

.mapping (address=>unit) public usersPaid

.unit public numUsers

Functions

.SmartSwitch()

.payToSwitch()

.refundUser(address recipeint, unit amount)

.withdrawFunds()

.kill()

Modifiers

.onlyOwner()

Events

.Deposit(address_from, unit_amount)

.Refund(address_to, unit_amount)

Smart Contract

Contract 

Owner

Account Address

Account Balance 

(Ether)

Account Keys 

(Private & Public)

Account

Creates/

Owns

Users

Accounts

sends 

transactions

Transaction:

Create Contract

Transaction:

paytoSwitch()

.value

IoT Device

Smart switch Controller Service

Check balance and turn

Switch on/off

Create

Contract

Send Ether to 

smart Switch 

contract

Transaction:

refundUser()

Transaction:

withdrawFunds()

Refund a User

Withdraw funds in

Contract account




